
N92-23363

An Architecture for the Development of Real-Time
Fault Diagnosis Systems Using Model-Based

Reasoning

Gardiner A. Hall, James Schuetzle,

David LaVallee, and Uday Gupta

Loral AeroSys
7375 Executive Place, Suite 101

Seabrook, Maryland 20706
(301) 805-0300

J

Abstract I. Introduction

¢ j:

This paper presents an architecture for
implementing real-time telemetry-based

diagnostic systems using model-based

reasoning. First, we describe Paragon, a

knowledge acquisition tool for offlin¢ entry

and validation of physical system models.

Paragon provides domain experts with a

structured editing capability to capture the

physical component's structure, behavior,

and causal relationships. We next describe

the architecture of the run-time diagnostic

system. The diagnostic system, written

entirely in Ada, uses the behavioral model

developed offline by Paragon to simulate

expected component states as reflected in the
telemetry stream. The diagnostic algorithm

traces causal relationships contained within

the model to isolate system faults. Since the

diagnostic process relies exclusively on the
behavioral model and is implemented without
the use of heuristic rules, it can be used to

isolate unpredicted faults in a wide variety of

systems. Finally, we discuss the

implementation of a prototype system
constructed using this technique for

diagnosing faults in a science instmmenL The

prototype demonstrates the use of model-

based reasoning to develop maintainable

systems with greater diagnostic capabilities at
a lower cost.

Diagnosing spacecraft faults is a difficult,
error-prone, and time-consuming activity.

Spacecraft diagnosis is performed by an

operations team composed of a large

contingent of highly trained people. These

people monitor a satellite telemetry stream

containing hundreds of system data points.

When an anomaly is detected, the operations

team analyzes this data with respect to

archived historical telemetry data and detailed

spacecraft design information. Analyzing

such large quantities of data and developing a

hypothesis explaining the data is an extremely

challenging task. It is not uncommon for

satellite anomaly investigations to take several

days.

The already difficult chore of satellite fault

diagnosis will be even more demanding in the
future. Satellites and their instruments will

become more sophisticated and complex,

raising the complexity of the fault analysis

process. Along with increased complexity,
future missions are expected to last longer. A
mission life measured in terms of decades

rather than years, introduces challenges in

maintaining the operations team skill level.

The desire to support interactive science

operations conducted by people external to

the control center will further complicate fault

diagnosis activities. The operations crew's

ability to maintain a current accurate

assessment of the spacecraft's state will be

77

taxed as more people manipulate the
spacecraft and its instruments. Due to these

increased complexities, the corresponding

control centers are apt to be more costly to

build, maintain, and operate.

The application of artificial intelligence

techniques promises to help alleviate these

problems by increasing the level of

automation in spacecraft operations.

Specifically, improving the automation level

of a control center may result in realizing the
following benefits:

a. reducing the risk of catastrophic
mission failures

b. reducing the cost of control center
operations

C. increased spacecraft and instrument
utilization

d. increased retention of key operator's
skills

e. an ability to "scale up" control centers

to handle more complex spacecraft,

more spacecraft and instrument
activities, and more users without a

proportional increase in cost

This paper describes a system that improves

the level of automation in a control center by
automating a control center's fault detection
and isolation activities.

Background

Our approach to providing automated fault

diagnosis tools that quickly and accurately
find and solve problems is centered on three

basic premises. First is the belief that

knowledge base construction and

maintenance activities are most appropriately

performed by domain experts. Second, a

fundamental feature of our expert systems is
the separation of problem solving from

knowledge acquisition. Third, the tools we

build reflect the notion that solving different

problems requires different problem-solving

techniques. The rationale for this design

philosophy is documented in [JAW-87].
Figure 1 illustrates .the architecture derived

from these design principles.

Our first tool, a rule-based expert system,

the Ford Lisp Ada Connection (FLAC)
described in [JAW-88], includes an offline

knowledge acquisition component and an

online inference engine. The offline

component is an intuitive graphical editing
tool that is used directly by the domain

expert. It does not require knowledge of AI

or expert systems and is easily learned by the

domain expert. The rule base is developed as
a graph of nodes symbolically depicted as

and�or gates, as typically seen in CAD

systems for integrated circuit design. Once

the expert is satisfied with the rule base it is

downloaded to the online system. The rule
base is loaded into data structures at run time

for use by the embedded Ada inference

engine.

FLAC successfully demonstrated the

feasibility of real-time expert systems.

However, the limitations of production rule

systems soon became apparent. Fundamental

to these systems is the requirement to

enumerate explicitly all possible faults.

Intuitively, as the complexity of the system
increases, it becomes increasingly difficult to

predict accurately every possible fault

scenario. Another deficiency in the rule based

approach is the inability to gracefully solve

problems that change over time. One key

requirement for a diagnostic system is the

capability to reason about temporal and

control relationships between attributes of the

target system. Developing a rule base that
captures and implements rules describing

temporal and control relationships is

exceedingly difficult and error-prone.

78

ONEI_ $VSI|M

0_'| J/g[$ Yl ||ld

I_ I ohu_ I

.I ,..-.-, A , I
llOG! I KIIII_IOGII |A_ ACCiSI _J_ IrA! IASI I

Kill

Ir_i _ ";--q'_ \ K_,O,WtE_I // I_ vslT CA. l_m_v_ / 1 "''_

IIP_II

AM

K 114Oriel I II_l

I \r--n/ I .,I \r---l/
l _1 V I Ip,__,tr,oNI I • •

Figure 1. An Architecture for Knowledge-Based Systems

Issues associated with maintaining a rule base

large enough to describe a spacecraft also
became apparent. Because of the unstructured

nature of rule bases, maintenance is difficult

when adding or modifying rules. The
unstructured nature of rule bases also leads to

a formidable verification and validation task.

Additionally, as rule bases become larger,

maintaining consistency between rules

becomes increasingly difficult. Maintaining

rule base integrity requires the addition of
more rules and routines dedicated to the

consistency checking function.

know the internal processes of a
machine and can determine the

machinery's state from observed

values. In a rule-based system,

relationships defining each observation
and the machine's state must exist.

bo Model-based systems can reason about

a system as it changes over time.

Model-based reasoning systems have

this capability because events and
conditions can be represented by
mathematical functions that are close

approximations of actual conditions.

To overcome these difficulties, we began an

investigation into a model-based reasoning

approach to real-time fault diagnosis. The

model-based reasoning approach has
promising features relevant to control center

fault diagnosis activities. For instance:

ao Model-based systems reason from
deeper principles. Model-based systems

Like FLAC, our model-based reasoning

system contains an offline graphical

component for easy entry of knowledge, and

an online embedded diagnostic component.

The offline component, originally

implemented by Loral's Space and Range

Systems division, is a model-building tool

called Paragon. Paragon is used to build a

structural and functional model of the system

to be monitored. The model is exported as a

79

file to be loaded at run time by the online

diagnostic component. The diagnostic

system, developed by Loral AeroSys, uses
the behavioral model to predict expected

states for the system and compares them to
actual states as reflected in the telemetry

stream. The diagnostic algorithm traces

causal relationships described in the model to

isolate system faults. The diagnostic system

is implemented in Ada and is capable of real-

time performance on conventional

processors.

The remainder of this paper discusses our

experiences with the model-based reasoning

approach in more detail. Section II describes
the architecture of the system. The

implementation of the prototype is covered in
Section III, and our results and conclusions

are presented in Sections IV and V

respectively.

II. Model-based Reasoning System
Architecture

In our prototype system there is an offline

component for creating and verifying
knowledge bases, and an online component

for the diagnostic software. This design

reflects the architecture of many current

control centers (e.g., MSOCC, Space

Telescope). The offline systems define

telemetry and command databases, while the

online systems use these databases for

interpreting spacecraft telemetry and building

spacecraft commands.

Offline Knowledge Acquisition

System

The Paragon knowledge acquisition tool

provides a method to construct a detailed
structural and functional model of a problem

domain. The model is specified in terms of

objects, object behaviors, and relationships

between objects. These different views of a

model can be thought of as defining

conceptual and relational entities. Conceptual

entities define concepts existing in the

problem domain and are composed of

dynamic and static aspects. Dynamic aspects
describe an object's relationships to other

objects and how that object may be

manipulated. Static aspects describe the

object's attributes and how these attributes

relate to other concepts. Relational entities

describe relationships between two concepts.

Each relationship within the model has a

specific and well-defined behavior. Figure 2,
a screen dump from a Paragon session,

provides an example model definition.

Concepts in the Paragon system are either
relations, classes, or instances. The Paragon

system supports inheritance in the form of

class_ subclass _ instances. This

classification scheme is a strict hierarchy; an

instance may have at most one defining class.

Using this scheme, a semantic network is

constructed representing the real-world
system. The frames composing the network
are the defined instances. The slots of the

frame hold the object's attribute values.

Relation objects link the frames to complete
the network.

Figure 3 provides an example of applying

concepts, relations, and dynamic and static

aspects to a physical object, a thermal switch.

Two relationships, temperature and current,
affect the concept thermal switch. The switch

also contains the local attributes switching

temperature and output. The internal process

of the thermal switch provides for two

possible states: ON and OFF. The dynamic

aspects of the concept of the thermal switch

are represented by the links labeled

Temperature > = SW and Temperature < SW.
These represent the possible transition
conditions between the ON and OFF states.

For example, if the incoming temperature

value is less than the local attribute switching

temperature, control is passed to the ON

state. The static aspects of the thermal switch

concept are described by the event equations

labeled Output = 0 and Output = Current.

8O

Figure 2.Sample Paragon KnowledBc Base

Thermal Switch

Current

Temperture

ON

emperature =,-

wit©hing TemF

putput ,, Current J

v

A

OFF

IO.,p.,. oI

emperetu re .
witching Temp.]

I Switching Temp.Output]

Figure 3. Thermal Switch Class Example

81

Using these ideas, a model of the physical

system is built by recursively defining and

instantiating frames and relationships. For a

spacecraft, the objects in the system are the
onboard components. Each object's attributes

are the parameters contained in the

spacecraft's telemetry stream. The design and

functional information for each object is

captured by defining the object's possible
states, state transitions, and behavior when in

a particular state. An object's attributes may

be affected by other local attributes, itself, or

attributes of another object. The process of

defining objects and relationships continues
until a model of satisfactory fidelity is

achieved. Included with Paragon are tools for

inspecting the classes, objects, and

relationships within the system. Also

included is a simulation capability for

validating the model's correctness.

Online Diagnostic System

The real-time component of the diagnostic

system is the Model-Based Reasoning

(MBR) module. The primary function of the

MBR module is to detect and diagnose

electromechanical or other system faults in
real time. The diagnostic system is composed

of simulation, monitoring, and causal

analysis subsystems. The simulation

subsystem uses the Paragon-developed

knowledge base to generate expected values

for each telemetry (attribute) point. The

monitoring subsystem synchronizes the

simulation with actual time, and performs

expected versus observed value comparisons.
A mismatch between these two values

triggers the causal-analysis subsystem. The

causal-analysis subsystem develops

hypotheses explaining the observed behavior

by examining each faulty component's

relationships. These three subsystems work

in unison to perform fault detection and

diagnosis.

The simulation subsystem uses the
information contained in the Paragon model

to continuously update the target system's

expected state. Specifically, the simulation

cycles through all the objects in the system,
evaluating each object's state transition
criteria for the current state. Once the current

state is determined, its attributes are modified

to reflect that state. The frequency of the

simulation's cycle is the real-time rate.
Modifications to the expected state can be

effected through external commands,

scheduled activities, or the model's internal

processes. Maintaining this model provides a

reference point for evaluating the spacecraft's
health.

The monitoring subsystem is responsible for

fault detection. The monitoring process
compares time-synchronized, simulation-

generated, expected values with actual

system-measured values (telemetry in the

case of a space system) at predefined time

intervals (cycle). A component is considered
to be abnormal when these two values

disagree. These abnormal components, along
with their attributes, actual and expected

attribute values, and fault-detection cycle

identifiers, are posted to a blackboard
structure, called the Abnormal-Components-

Blackboard. The Abnormal-Components-

Blackboard is inspected to determine if the

detected abnormal component exists on the

blackboard. If the component does exist on
the blackboard, its fault-detection time-cycle

identifier is updated with the old fault-

detection time-cycle number before it is

posted to the blackboard. Whenever
abnormal components are detected, further

analysis is performed by the causal analysis

subsystem to isolate the exact cause(s) of the

fault(s) from the abnormal components list.

The causal analysis of suspected abnormal

components relies on functional and design

information provided by the Paragon model.

The basic fault-diagnosis strategy for the

causal analysis is:

82

a.

b°

c.

The list of suspected components is

read from the Abnormal-Components-

Blackboard. A node corresponding to

each suspected component is created.
These nodes are referred to as Fault

Mechanism Nodes (FMN) and are
maintained in a list structure.

Design and causal link information is

obtained for each faulty component.

During this step, the causal-effect

pointers of the FMNs are assigned.

Three types of pointer are set: In-link,

Out-link, and Next pointers. In-links

point to FMNs whose components
affect the attribute(s) of the current

FMN. FMN Out-links point to FMN(s)

whose component(s) attribute(s) can be

affected by the current FMN. The Next

pointer simply points to the next FMN.

Setting In-link, Out-link, and Next

pointers transforms the FMN list into a

graph, referred to as a Fault Mechanism

Graph (FMG). Figure 4 shows a FMG.
Each block contains the component
name, In-link, Out-link, and Next FMN

pointers. As shown in Figure 4, the

component Power Supply 1 has a null

In-link pointer indicating that it is not
affected by any other FMN. The Out-

link pointer of Power Supply 1 points
to the node Instrument Power. This

indicates that Power Supply 1 causes
Instrument Power to be abnormal.

Instrument Power's In-link pointer
indicates that Instrument Power is

affected by Power Supply 1. The

component VNIR FPA has a null Out-
link pointer indicating that it does not
affect other FMNs. These

interpretations can be similarly applied

to the other nodes of the graph.

Scan

Electronics

VNIR

F'PA

Instrumenl
Power

Power

Supp4y
I

Legend:

In-link

Out-Link

Next

Figure 4. MODIS Fault Mechanism Graph

113

d. The In-link and Out-link pointers of
each node of the FMG are examined.

Components with null In-link pointers
are considered to be fault sources.

Fault-propagation paths are computed

by iteratively selecting those FMN's

with null In-link pointers, tracing the

node's Out-link pointer to the affected

FMN and tracing the affected FMN

Out-link pointer to other affected FMNs

until the current Out-link pointer is null.

These paths explain the order in which

components became abnormal.

Steps a through d are repeated when a fault-

detection cycle detects an abnormal

component, or a previously detected
abnormal component is found to have
returned to a normal state.

III. Prototype Implementation

We demonstrate our model-based approach

for real-time fault detection and diagnosis in a
testbed environment. The testbed is a

complete command and control environment

for the Moderate Resolution Imaging
Spectrometer (MODIS), a future Earth

Observing System (EOS) instrument. Our

prototype runs on a VaxStation 3100 and is

implemented in the Ada programming

language. The MODIS model was developed

using the PARAGON tool on a Symbolics
3640 and downloaded to the Vax

workstation.

The model, based on a proposed design for
the MODIS instrument, took three months to

implement using Paragon. The MODIS

model consists of over 50 component

classes, 80 components, and 11 types of

functional relationship. In addition, the model

is capable of responding to 96 different

instrument commands, and transmits 132

different telemetry points. The model
includes definitions for all normal instrument

states, state transitions, and internal attribute

update equations for all components.

The testbed contains three processors to

provide a high-fidelity environment for

evaluating control center automation

techniques. The architecture of the testbed is

shown in Figure 5.

The Symbolics is the offline processor, used

for creating knowledge bases. One of the
VaxStations is dedicated to control center

functions. In addition to fault diagnosis, there
is software for:

a° Receiving and decommutating a 2 Kbs

stream of packetized telemetry

b. Processing and transmitting instrument
commands

C. Displaying graphically instrument

telemetry data

The other VaxStation, the telemetry source,

executes simulation software generating
instrument telemetry. The simulator has the

capability to:

a. Modify the value of any object's
attributes

b. Update the current state of an object

c. View any object's attribute values

d. Control the length of simulation cycle

time (useful for debugging)

e° Accept and process instrument

commands sent from the ground

f. Packetize and transmit telemetry.

Telemetry and commands are exchanged

between these two processors by way of

Ethernet using the TCP/IP protocol.

114

VaxStation 31 O0

Symbolics

J Model Editor

Model Validation

Monitoring Dlsplayll

I FDIR I

Model Representation
Simulation

Model

T

"1rn

o
t
r

Y

C

°Lm

m

n

d
VaxStation 31 O0

l Model Simulation l

Figure 5. MODIS Control Center Testbed

IV. Results

Using the testbed, the prototype MBR system
has been tested under several different fault

scenarios. These fault scenarios were

developed on the basis of Loral's spacecraft

operations experience. The types of fault
scenarios tested were:

Importantly, these fault scenarios were
designed after the implementation of the

model and fault diagnostic software. In no

case were component specific rules
describing fault conditions or causes

implemented.

V. Conclusions

a°

b.

c°

Components that commonly fail during

mission (e.g., a sticky relay)

Rare or infrequent component faults

(e.g., a failed door drive motor)

Multiple simultaneous fault scenarios

(e.g., a failed heater and a faulty relay).

We also tested the case where two

components affecting a common component

fail. In this scenario, our prototype identified

both components as failed. In all fault
scenarios tested, the MBR system accurately
detects and isolates the source of fault.

These preliminary results suggest that model-

based reasoning is a viable method for

automating spacecraft fault detection and

diagnosis activities. On the basis of this

research several advantages of the technique

are apparent:

a. A model-based system is capable of

detecting and diagnosing unpredicted,
non-intuitive faults in a continuous,

dynamic system in real-time

b, The knowledge acquisition process is

simplified

85

C. The maintenance of the knowledge base

is simplified

d° This technique can be leveraged with
other control center and spacecraft

implementation efforts.

This system has the capability for detecting

and diagnosing unpredicted faults. The test
cases that have been devised emphasize this

point. The design of the fault scenarios used
for test purposes was based upon operational

requirements rather than diagnostic system

capabilities. During demonstrations of the

prototype, faults are generated "on the fly" by

having members of the audience select the

component to be faulted.

Knowledge acquisition activities for

implementing the system are reduced.
Building the knowledge base for a model-

based reasoning system only requires the

ability to describe a correctly operating

system. Since there is no need to enumerate

all possible behaviors, the amount of time

required for constructing knowledge bases is

reduced. Verification of the knowledge base

is easier. Using the physical system as a

reference point allows a simple comparison

demonstrating the model's accuracy. One of
the advantages of representing a physical

system as a network of objects is that this

presentation lends itself to a graphical

representation. A graphical representation is

advantageous because it allows the

knowledge-base builder to view components

from different perspectives.

An important advantage a model-based has

over rule-based systems is that knowledge-
base maintenance is an easier task. The object

orientation of the model simplifies knowledge

base maintenance. As each object's interfaces

with other objects in the system are clearly

defined, modifications can be localized to the

object, reducing the potential for harmful side

effects. The object-oriented approach also

provides for potential knowledge-base reuse.

For example, libraries containing generalized

reconfigurable objects can be built.

The single most important advantage of a

model-based system may be that it is

complementary to current control center
designs. Calculating the expected state for

each on-board component provides a

mechanism for dynamically updating

telemetry limits and alarm values. Another

key point is that most projects construct

simulators for ground system verification and

training. The model-based technique for fault

diagnosis provides a method for leveraging
these simulators into day-to-day operations.

References

[JAW87] Jaworski, A., LaVallee, D., Zoch.

A Lisp-Ada Connection, Proceedings of the

1987 Goddard Conference on Space

Applications of Artificial Intelligence and
Robotics, (1987).

[JAW88] Jaworski, A., Thompson, J.
Automated Satellite Control in Ada,

Proceedings of the 1988 Goddard
Conference on Space Applications of

Artificial Intelligence and Robotics, (1988).

Bibliography

Items not specifically referenced in the text.

Ferguson, J.C., Siemens, R.W., Wagner,
R.E.STAR-PLAN: A Satellite Anomaly

Resolution and Planning System,

proceedings of AAAI Workshop on Coupling

Symbolic and Numerical Computing in

Expert Systems, (Aug. 1985)..

Fulton, S., Pepe, C. An Introduction to

Model-Based Reasoning, (January 1990), AI

Expert (pp. 48 - 55).

86

